Numerical investigations of fault propagation and forced-fold using a non smooth discrete element method
نویسندگان
چکیده
Geophysical problems as forced-fold evolution and fault propagation induce large deformations and many localisation. The continuum mechanics does not seem the more appropriate for their description and it appears more interesting to represent the media as initially discontinuous. To face both phenomena, a non smooth Discrete Element Method is used. Geophysical structures are considered as collection of rigid disks which interact by cohesive frictional contact laws. Numerical geophysical formations are correlated to mechanical properties of structures through observation and mechanical analysis. RÉSUMÉ. Les problèmes géophysiques tels que l’évolution des plis et la propagation de failles induisent de grandes déformations et de nombreuses localisations. Il apparaît donc difficile de décrire le problème avec les outils de la mécanique des milieux continus, et il est donc préférable de représenter la structure comme initialement divisée. Ces deux phénomènes sont étudiés via une approche non régulière par éléments discrets. Les structures géologiques sont considérées comme des collections de particules dont les interactions répondent à des lois de contact cohésif frottant. Les observations des structures géophysiques numériques sont corrélées aux propriétés des structures au travers d’une analyse mécanique.
منابع مشابه
Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
متن کاملA Study of the Wave Propagation Velocity in Granular Soils Using Discrete Element Method (DEM)
In the present paper, discrete element method (DEM) is used to study wave propagation phenomenon in granular soils. The effect of factors such as coefficient of friction, frequency, normal stiffness and soil gradation on the wave velocity is studied. Using the wall motion based on the sinusoidal function is the method of loading used in this simulation, through which the pressure wave is transf...
متن کاملNumerical Solution of Seismic Wave Propagation Equation in Uniform Soil on Bed Rock with Weighted Residual Method
To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical...
متن کاملConjugate problem of combined radiation and laminar forced convection separated flow
This paper presents a numerical investigation for laminar forced convection flow of a radiating gas in a rectangular duct with a solid element that makes a backward facing step. The fluid is treated as a gray, absorbing, emitting and scattering medium. The governing differential equations consisting the continuity, momentum and energy are solved numerically by the computational fluid dynamics t...
متن کاملEccentricity Fault Diagnosis Studying for a Round Rotor Synchronous Machine
The paper presents a mathematical base modeling combined to Modified-Winding -Function-Approach (MWFA) for eccentricity fault detection of a round-rotor synchronous machine. For this aim, a 6-pole machine is considered, and the machine inductances are computed by MWFA in healthy and also under eccentricity fault. A numerical discrete-time method has been proposed to machine modeling in voltage-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006